
Benchmarking and Modeling
Prof. Patrick G. Bridges

Roadmap for Modeling/Benchmarking

• Multiple modeling/assessment efforts
• Key communication components: datatypes, simple collectives, scaling modeling
• Irregular communication in production DOE applications

• Creating new global and coupled communication benchmark
• Proposed focus of last two years

• Curated benchmark suite based on assessment and benchmarking results
• Modeling CPU/GPU/DPU performance tradeoff for coupled fluid/interface benchmark

PY 2020-21 PY 2021-22 PY 2022-23 PY 2023-24 PY 2024-2025

Research Areas

Performance
Modeling and
Visualization

Proxy Application
Development

Coupled Comm. RooflineSimple Collective Roofline AnalysisGPU Halo Roofline Communication
Analysis

Initial ReleaseLow-Order Z-Model
Implementation

Proxy ReleaseInitial
Implementation

High-Order
Z-Model Design

Partitioned + Neighbor
Comm. Modeling

GPU Neighbor Comm.
Modeling

Partitioned Comm.
Modeling Datatype Modeling CPU/DPU Partitioning Modelling

Application
Identification

Release of
coupled proxy

Open and NNSA
code integrationImproved high-order data exchange

Creation of Communication Representative Benchmark SuiteRelease of coupled proxyIntegration with open and
NNSA codes

Complex Collective Modeling

Modeling/Benchmarking Communication
Primitives: Datatypes
• Needed to efficiently communicate and compute

(e.g. reduce or gather) irregular data
• Measured data performance on Lassen with careful

benchmarking
• Generic datatypes can be faster for small irregular

data (50 usec faster round trip)
• Generic datatypes prohibitively slow for large irregular

data (tens or hundreds of ms slower round trip!)
• Developed performance model to quantify GPU

datatype behavior
• LogP models effectiveness limited for GPUs
• LogP models can quantify datatype implementation

performance
• See Nick Bacon’s Poster, EuroMPI 2023 paper

• Working on new datatype abstraction to preserve
advantages and eliminate disadvantages

GPUDirect non-contiguous datatypes

GPUDirect contiguous datatypes

Kokkos-packed
buffers

Kernel launch
overhead

Generic Pack Overhead

Measuring and Modeling Irregular
Communication
• Many applications rely on irregular

communication
• This communication is not easy to measure

or reproduce
• Created tools to extract irregular

communication abstraction performance:
• Analyzing communication behaviors and

optimization opportunities
• Creating benchmarks to replay these

communication behaviors
Frequency of token P2P send by size on xRAGE Asteroid Problem
(512 ranks, 50 bins, log Y scale)

Collecting Irregular Communication Patterns

• xRAGE (LANL shock hydrodynamics code) uses Tokens to represent the
communication pattern

• Creation exchanges counts of data (no datatype info)
• Usage of Token is the actual exchange (can flip direction)

• Multiple protocols for creating and using tokens with different performance
• Creation: RMA-based sparse AllToAll, SomeToSome, MPI AllToAll; Amanda

examining tradeoff
• Communication:

• Currently uses simple point-to-points to each process that is involved in the final pattern
• MPI Neighbor collectives could optimize but MPI topology creation too expensive
• Working on new abstractions to optimize this problem (see Amanda and Tony’s talks)

• Research funded by both PSAAP III and LANL/UNM contract

5

Irregular Communication Profiling
• Maintain global string buffer that writes to file when the program finishes

• Token Creation
• Token ID (same across all ranks), Ranks involved
• The count(s) and base direction(s) of data to be exchanged
• Call site, Creation Time
• Example:

• Rank 0: 0|B1:1-200,T2:1100,F4:900,|1.23|T0
• Rank 1: 0|B0:200-1,B2:300-400,B3:1500-1600,|0.97|T0

• Token Usage:
• Token ID, Direction
• Size of Datatype involved (char, int, double, etc), Time
• Example of three uses of tokens: 0:0:8|1.01, 1:0:8|2.45, 0:0:4|0.78,

• Minimal impact to problem completion time; total runtime slower (from I/O costs)
• Also examining HYPRE + AMG 2023, debugging collection/analysis

6

Finding Groups of Tokens
• Cluster tokens by usage characteristics:

• X-axis: Exchanges performed
• Y-axis: Items exchanged
• Z-axis: Ranks exchanged with
• Color = k-means group (18 groups)

• Pro: Clear sets of groups, unclear “right”
number of clusters to make

• Con: Can’t yet individual track how token
characteristics change as scale changes

• Next steps:
• Adding in call site to better track changes in

token usage as scale changes
• Examine optimization opportunities of

difference token groups
X

Y

Z

7

How long do token
operations take?

• Blue = average make time
of token with label

• Orange = average use time
of token with label

• Green = total number of
tokens in this label

• Red = total number of
scatter/gather calls made
using tokens in that label

• Label 6 = the first 400
skipped tokens

8

Can we compactly capture and replay
these patterns?
• Goal: provide benchmarks that capture relevant characteristics of irregular
application communication

• Develop and test performance optimizations without prohibitively large
communication traces

• Approach:
• Extract distributions of communication partners, sizes, and data strides from

application runs using collected data (empirical or parametric distributions)
• Create benchmark that generates irregular communication based on these

distribution parameters
• Also supports system acquisition efforts – can provide benchmark and
data from key applications to vendors

Distributions from CLAMR,
CabanaMD, and xRage

• 256 process runs of CabanaMD, CLAMR
(LLNL Quartz), and xRage (LANL
Darwin)

• Collected information on owned and
remote size, communication partners

• Significant difference between
benchmark number of peers and
production code number of peers!

Benchmark recreates these distributions
• Compared CDFs between

benchmark and application runs
• Graph shows of owned and remote

sizes, block sizes, and block strides
for 512 process CLAMR run

• Examining correct statistical
equivalence test to use - outliers in
real data make simple statistical
tools inaccurate

• Want to extend these results to
additional applications,
benchmarks, and input decks

Goal: Create suite of similar tools and
inputs for production codes
• Finding: Significant gap between production communication patterns and

proxy/benchmark communication patterns
• Most Benchmarks use communication patterns that are highly unrealistic
• Some counterexamples exist but mostly do not use GPUs (MiniAMR, SNAP)

• Need suite of proxies, benchmarks, and input data that mimic production runs to drive
research, development, and acquisition

• Provide better input decks for existing proxies, macro- and micro- benchmarks when possible
• Will require continued work on new benchmarks and production application data

• Goal for remaining two years: develop and curate this suite in collaboration with national
lab partners

• Partners at labs already identified, SIAM PP mini-symposium with personnel already planned
• Already working toward data on xRAGE, HOSS, SPARC
• Discussions needed on EMPIRE/MiniEM, other applications to target

Beatnik: A High-Performance Parallel
Fluid Interface Benchmark
• Benchmark for methods requiring global communication

• Uses Raag and Shkoller’s fluid interface motion formulation
• Implementation in ECP-Copa’s Cabana/Kokkos framework
• Low-order model is FFT-intensive
• High-order model requires far-field force solver

• Scalable low-order implementation and brute force high order
parallel solvers done; cutoff-based high-order solver in progress

• Next steps:
• Benchmark and optimizing global communication algorithms
• Examining octree for FMM using Cabana’s sparse grid abstractions
• Waiting to integrate with a fluid solver (HIGRAD or Fiesta/Fury) until

Spring 2024 after discussions with Jon Reisner
• Source available: https://github.com/CUP-ECS/beatnik
• For more information, see Jason Stewart and his poster

Beatnik Low-order Multi-mode Rocket Rig
Simulation

https://github.com/CUP-ECS/beatnik

Modeling Performance Scaling and
Communication Impacts
• Initial approach: train machine learning model to predict

application runtime based on communication rooflines.
• Predictions were very poor with limited data
• Training data needed for black box modeling was prohibitive

• New approach: Adopt a gray box approach based on
performance laws to reduce training data needed

• Generalized Amdahl’s law as baseline prediction
• Learn overhead function to correct Amdahl for each application

• Step one: directly train overhead from application runtime
• Compare neural network trained overhead with Amdahl percent

parallel estimated from exact problem or aggregate of problems
• Result: Neural network competitive with Amdahl’s law with

high-quality information on amount of parallelism in the problem
• Next: learn how changes in communication rooflines impact

the parallelism and overhead in this model
• Submission to IPDPS or ICS in preparation

Goal: Model communication tradeoffs for
coupled codes on DPU and APU systems
• Driving question: How to partition, communicate, and program coupled codes

in current and upcoming systems?
• When should we program and locate bandwidth/latency sensitive algorithms on DPUs?
• How to partition communication primitives and algorithms between GPU and CPU cores in APU systems?

• Application: Assume a coupled code comprised of codes similar to Beatnik and HIGRAD/Fiesta
(e.g. the Fury code underway at LANL)

• Step two: Predict how bandwidth changes impact scaling overhead in Beatnik low order and
Fiesta/HIGRAD performance (see approach on previous slide)

• Step three: Predict how changes in latency impact scaling overhead performance of sorting/tree
methods

• In parallel: Understand performance characteristics of DPU and APU systems.
• Have started (non-NDA) discussions with NVIDIA.
• Will be working with AMD under NDA as well.

Summary
• Wide range of findings, opportunities and some limitations and areas
on modeling and benchmarking across a range of communications

• Specific modeling and benchmarking goals for final two years of
project to inform abstraction development

• Benchmarking and modeling results driving and closely integrated
with abstraction development and optimization

